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1.0 INTRODUCTION

The work presented in this report has been directed

in two rather different areas, which are discussed separately

in Sections 2.0 and 3.0.

In Section 2.0 we describe a new method of computing

the dipole autocorrelation function for molecular pressure

broadening. We believe that numerical implementation of this
approach should yield reliable estimates of far-wing absorp-

tion by H20 and other molecular species.

In Section 3.0 we document the software which has

been developed for updating the AI'GL Line Parameters Compila-

tion- / for asymmetric rotor molecules. In Section 3.0 we

describe the function of the various editing, sorting, and

comparison subroutines which are used in the updating proced-

ure. A listing of the various 120 bands for which the pro-

cedure has already been applied is provided. These updated

bands have all been incorporated into the 1980 Edition of the

AFGL Line Parameters Compilation.
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2.0 A NEW APPROACH TO THE DIPOLE AUTOCORRELATION

FUNCTION FOR MOLECULAR PRESSURE BROADENING

The work reported in this section has benefited

greatly through active participation by S. A. Clough of Air
Force Geophysics Laboratory, and by R. H. Tipping of the

University of Nebraska at Omaha.

The absorption coefficient of a gas may be computed
as the Fourier transform of the dipole autocorrelation

function2 /

iHt iHt

where p(t) = e = v e--- is the Heisenberg dipole moment

operator, and where the average denotes a statistical average

over the canonical thermal equilibrium density matrix

p(H) = exp(-OH)/Tr{e-BH). (2)

The absorption coefficient can then be expressed in

three equivalent forms:

a (W) = n rad. X"(w), (3)

with

X"(w) tanh ( ) dt e-iwt [0t) + (4a)

=(1 - e " ww )  dt e-iwt (b-£ e(t), (4b)

aodt e-iwt (c-# [*(t) - *(-t)]. (4c)

The equivalence of the above three formulas is con-
tained in the time-domain statement of the Fluctuation-Dissi-

pation Theorem 3/ (FDT),

2
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(-t)+ i, (5)

which follows from cyclic invariance in expression (1) for

the dipole correlation function.

The statement of the FDT in the frequency domain is

e *(w), (6)

where

1 dt e-'wt f(t). (7)

In near-wing pressure broadening theory, it is not

terribly crucial that the FDT be satisfied in any approximate

theory. This is not the case in considering far-wing absorp-

tion, as the following simple example will illustrate. In

particular, if one evaluates formulas (4a) - (4c) using the

well-known impact approximation, -/ one obtains the results

X"1(w, tanh (--W,) Pi I<illPllf>l'
if

r r , (8a)
i' (W_ fi ) 2.r2  (w+f i) 2 +r 2

X,(w) (I - e- MW) Pi I<ilIIllf>l' 1 r
if (w-wfi)2+r, (8b)

x~f ( ) : Pi IkilluI I>1l2
if

1 r r
(WWfi)2+r2  (W+Wfi)2 +r'

In the extreme far-wings (w >> wfi for all strong

lines), these three formulas predict very different results

fr the estimated absorption. Thus we view it as crucial that

rany treatment of far-wing absorption should satisfy the FDT.
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In the course of the present contract we have formu-

lated a method of constructing the autocorrelation function in

such a way that it satisfies the FDT on a microscopic basis.

The approximations of the theory are:

a. The binary collision approximation (this is well-justi-

fied in the far wings for atmospheric densities).

b. The uncoupled line approximation (the validity is not

easy to assess, however, one might expect line-coupling

effects to average out in the far-wing region).

c. Isotropic interactions are treated exactly; anisotropic

interactions are treated by second order perturbation

theory. This latter approximation might be improved on

by making the approximation of ignoring the effects of

time-ordering in treating various time-development

operators.

A complete derivation of the formalism described

above is presented in Appendix A. Here we briefly outline a

few of the more relevant results.

Within the uncoupled line and binary collision ap-

proximations, we find that the autocorrelation function is

given by

*(t) v p(e. )(2j i + 1) I<jillIlltf>I2
" i~f 1

e -(C)t Cif(t). (9)e jf - Ci i

This result satisfies the FDT provided Cfi(-t) Cif(t+iR).

For the Cif(t) correlation functions, we obtain

Cif(t) = exp {Np [qif(t) - 11} (10)

where Np is the number of perturbers, and with

4



qjf(t) = (29iTifmi X[ (jflmfmtjfljm)im)
1 j~Mm mI

mfmfm

* Tr {pH 0 ) <im'U(t-istoij m>

0 <jfmf U(t) I jfmf1>). (12)

In this expression, the bracketed quantities are Clebsch-Cordon
coefficients, and the U's are time-development operators.

From Eqs. (9), (JO), (11) one can indeed show that the FDT is

satisfied, along with the reality condition C if(t)* = Cif(-t).

Going to second order perturbation theory in the

anisotropic interaction, we find

[qif(t) - 1= Ki(t) + Kf(t), (12)

with

K f(t) - (C T () P (CO

Jk

t<jfJj tvljqJ' >j2 f(t), (13)

where p(c), p(q) are density matrices for the internal

states of the perturbers, and the translational motion of the
relative coordinate (respectively), and with

f(t) = i[t -i Wi - }, (14a)

[l-cos(w~t) ]
= ___2____ -t) . [W as t - sin(w at)] (14b)

W $2 W M2 .

with
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Similarly

K.(t) _ L P (Cj) p(C)

,1 > f(t), (16)

f(t) = W {(t - i

+ 1 (e iW (t-iW) (17a)

or

f(t) i + M - eM a$ cos w t]

+ [W lst - e M a sin wost] (17b)

W lo (Cjjj - j, . (18)

For simplicity, in writing down the above expressions we have

suppressed Clebsch-Gordon coefficients and m-summations, which

are important only for numerical calculations.

For large times, it may be shown that the above

equations yield the impact approximation -L2/  (including both

width and shift), i.e. the argument of the exponential in Eq.

(10) is a linear function of t.

At very small t, the correlation function behaves

essentially as a Gaussian. This implies that all time-deriv-

atives of Cif(t) exist at t = 0. This in turn implies that all

moments2 / of the lineshape function (in the frequency domain)

are well-defined and finite.

In order to implement the above theory for numerical

computation, the following tasks need to be performed:

6



a. The Clebsch-Gordon algebra must be done (this has already

been carried out for the case where the anisotropic in-

teraction V is taken to be a dipole-dipole interaction.

b. The relative coordinate wave functions I >, which

satisfy

(19)
mIv- +

2m 0

where V0 is the isotropic potential, need to be

calculated.

c. Matrix element of the form

r

must be evaluated.

d. Various summations over quantum indices need to be car-

ried out, and a Fourier transform of Cif(t) must be per-

formed to yield the lineshape function Cif(w).

In previous reports we have discussed some of the

problems associated with obtaining an accurate Fourier trans-

form of Cif(t). In particular, one must accurately sum con-

tributions of Cif(t) from time values which may differ by

three orders of magnitude (e.g. the difference between a dura-

tion of collision Td, and a time between collisions Tc). We

have also discussed a "difference function" technique for per-

forming the Fourier inversion. In this method, one writes

C(t) = CBasis (t) + Cdiff(t), (20a)

where

Cdiff(t) = C(t) -CBasis(t). (20b)

The basis function is chosen to have two basic properties:

a. CBasis(t) has an analytic Fourier transform.

7



b. Cdiff(t) vanishes at large t, elrminating the need to

integrate over large t values.

We have previously reported application of this

scheme to simple (real) correlation functions such as the

Anderson-Weiss correlation function. Here we briefly present
some results for a complex-valued correlation function, with

a time-dependent f(t) function given by Eq. (14).

The function we have chosen has the form

C(t) = e- a T (t) (21)

where a is a constant, and

F(t) f /w7 dwk e- FT f(t), (22)
o k B

with

1-cos (wk-(rot)tf(t):

(Wk_ rot)2

• sin w ( W-m o )t

+ i 1 {t- }krot (23)
(Wk-Wrot) Wk-Wrot

Although this model represents a rather gross simpli-

fication of the general theory, we note that f(t) has the same

time-dependence as in Eq. (14), with the identification woo

(rot Wk) If we choose a to have the value

C- eMWrot/kT (24)

rot

then r can be interpreted as the impact-approximation half-
width, and the long-time behavior of C(t) is given approxi-

mately by

8



C(t) e-rIti
M rot

Wrot kBT 1/2 kBT

exp(- ir t [e 'Br- ( . - - - 2 f dy eY]}. (25)
-rot 0

(The above expression ignores small terms in the arguments of

the exponentials which behave as constants at large t.)

To apply the difference function method, we have

modeled the basis function CBasis(t) such that the real part

is a convolution (in time) of a Gaussian and an exponential,
and the imaginary part is the derivative of Gch a function.

This choice has the correct properties that Re C(t) is even,

while Im C(t) is odd. The adjustable constants in the con-

volutions are chosen such that Cdiff(t) * 0 for large t. We

have also been able to choose Cbasis(t) such that Cdiff(t)

also vanishes at t = 0.

It turns out that one can obtain an analytic approx-

imation to the Fourier transform of Eq. (21), which is valid

in the far wing, by expanding to first order in the density,

i.e.

C(t) = 1 - aF(t). (26)

This can be Fourier-transformed analytically,-and discarding

spurious delta function contributions at the line center w 0

(which are improperly treated by the above expansion), one

obtains the result
C(w)

R(w) C

AWw ot+w 1/2
e- T ('rot ')  (wrt ), (27)

B jr-ot erotw)

where e is the unit step function

O(x) 1, x ! 0

0, x < 0,

9



and where

C (W): 1Lor 7r W2+r2

is the Lorentzian lineshape function.

In Figures 1 and 2 we show plots of the real and

imaginary parts of the difference function Cdiff(t), as used

in the numerical Fourier transform of C(t). These functions
are plotted versus a length variable x = 2nct, and the main
point to notice is that the difference functions oscillate to

zero at large x (large t).

The results of our numerical Fourier transform,

with the choice of parameters wrot = 100 cm-1, T = 296 0 K are

shown in Figure 3. To within plotting accuracy, the results

agree well with the predictions of the analytic formula (27).

The above model is rather too crude to assign much

physical significance, e.g. in a more realistic model, wrot
would be replaced by a whole distribution of frequencies (both

positive and negative) determined by the collision dynamics
and multipole selection rules. In spite of these complica-

tions, the results of the model calculation provide some con-
fidence that an accurate Fourier transform of realistic corre-

lation functions can be obtained using the "difference func-

tion" technique.

I10
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Figure 2. Imaginary part of the difference

function C diff(t).
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Figure 3. The ratio of the lineshape function C(w) to the

Lorentzian lineshape function for the case

w rot 100 ciiC', T 296 0K.
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3.0 SOFTWARE FOR UPDATING ASYMMETRIC ROTORS ON

THE AFGL LINE PARAMETERS ATLAS

The procedure we have employed to update H12 0 bands

for the AFGL Line Parameters Compilation is based on the pro-

cedure which we first developed to treat the v2band of

H12 0(161). The development of the method is based on two de-

mands; to eliminate entirely the making of typographical er-

rors when updating bands and, given an old and a new data

set, to construct from these data the best and most complete

data set possible for addition to the AFGL line atlas. Some

of the problems that can occur when dealing with very large

data bases are: 1) usually the new data does not fully re-

place the old, thus the final data set must be a controlled

merging of the two sets; 2) when parts of the new data set

are in question, both new and old data are carefully analyzed

to determine which is the better and hence which will be re-

tained for the next version of the atlas; 3) sometimes mul-

tiple quantum assignments of the lines occur, when they do

they must be found and eliminated. Once the procedure has

been applied to a band, we generate comparisons of the old

data to the new data to display the changes that have occurred.

We have also found it advantageous to keep track of the source

of each parameter for both future updating and for discussions

with the users of the AFGL line atlas.

Below we give a general discussion of the software
systems that make up the procedure, and in Figure 4 we give a

flow chart of the method. Although there are some changes

that must be made from band to band and from molecule to

molecule, we have attempted to keep the procedure as general

as possible for asymmetric rotor molecules (i.e. H 20, 0 3,
so 2; etc.). To date the procedure has only been app'i~ed to

vibration-rotation bands of the water molecule, and irn Table

1 we list the updated bands along with pertinent information

describing the data sets. All the new parameters, i.e. line

14
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positions, intensities, and lower state energies of transi-

tions for these bands are taken from C. Camy-Peyret, J. M.6-17/
Flaud, et al, and we wish to thank these authors for

making their data available to us. All of these bands are

present on the 1980 version of the AFGL Line Parameters

Compilation.

The start of the procedure is dependent on the form

in which the new data is available to us. If we are not able

to obtain the data directly from the source, we construct hand

punched card files of the published data. These files must

be carefully checked for typographical errors. Once the new

file is verified to match the published results we extract

the corresponding band from the AFGL tape and both files (new

and old) are run through the programs QCHECK and IDCHECK

which test quantum assignments according to selection rules

and band assignments, respectively. From this point on we
simply refer to the data used in updating the band as the
"new data" and the data from the AFGL tape as "old data."

Once we are assured the data files are correct we

frequency-sort each file and rotational-quantum-number-sort

(J', Ka', Kc', J", Ka", Kc") each file. The new quantum-

number-sorted file is input to the program MSFGENF, and the

old quantum-number-sorted file is input to the program MSFGENA.

MSFGENF and MSFGENA create mass storage fi'es of the new and

old data sets respectively. These mass storage files are con-

structed by the unique rotational quantum number assignment

of each transition and can reduce the effort of searching for

a particular line by several orders of magnitude. The result-

ing mass storage file has as its key the upper state rota-

tional quantum numbers, and each record contains all transi-

tions with the same upper state assignments and different

lower state assignments. The index key of each record is

calculated by the formula INDX = J'(J'+l) + Ka' - Kc' + 1.

If a file does not contain any transitions belonging to a

17



.* particular index, a flag is written to that index meaning no

* information available for that index. This check is incor-

porated into all programs which read the mass storage files.

Once the mass storage files (MSF's) are constructed

.- they are tested by the program MULTQ which checks for multiple

* assignments which, due to the structure of the MSF's, are

easily uncovered. If any multiple assignments are found, the

* extra lines are deleted from the quantum-number-sorted file,

the MSF is reconstructed and checked again by MULTQ, and this

is repeated until the final MSF's are known to be correct.

We next work with the new and old frequency sorted

files and the new and old mass storage files. As stated ear-

lier, it is required to have a tabulated listing of the dif-

ferences between the new and old data. This is done by the

program COMPARE which uses the frequency-sorted new file aAd

the old mass storage file. This yields a line-by-line list-

ing of the difference in the data sets along with several

types of flags that signal large differences in the data.

These listings have proved very useful in consultations with

users of the AFGL Compilation.

The frequency-sorted new file is also used in the

program HWGEN. The new files for H20 usually contain the

transition frequency, the strength of the transition, the

lower state energy, and quantum identification of the transi-

tion. Before the file can be used for the Atlas we need to

add the air-broadened half-widths for the transitions. HWGEN

adds to the new file the corresponding half-widths as calcu-

lated by Davies and Oli. 1  In addition, the program also

adds ID labels to identify the source of each datum (five ID

labels in all - source of the transition quantum numbers, the

source of the frequency, the strength, the half-width, and

the lower state energy). The ID becomes important in future

references concerning the quality of the data for a particular

line. The ID labeled file containing the corrected half-

widths is now referred to as the frequency-sorted new file.

18



The frequency-sorted old file and the new MSF are

used in the program OLDLINE which selects all lines in the

old data which are not present in the new data. This file,

which is called the missing line file, is then run in the pro-

gram TAGMISS. The TAGMISS program uses two MSF's containing

the rotational energy levels of the upper and lower vibra-

tional states of the band in question to add to the missing-

line file the line positions and lower state energies derived

from the new data. This is not always possible since some of

the energy levels for certain vibrational states are unknown;

in these cases the old data is retained. The program adds ID

labels to the lines according to the types of changes that

have occurred. Finally all lines that retain the old fre-

quency are inspected and the line position is estimated from

the new data. This is done to remove any obvious typograph-

ical errors in the old data.

At this stage of the procedure we have an ID labeled

new file and an ID labeled missing line file from the old data.

These two files are fed into CMPLETE which, using mass storage

techniques, adds to the two files whenever possible more accu-

rate half-widths computed by a method similar to reference 18

but with a more correctly determined Anderson parameter b0 for

the complete transition i -+ f. In carrying this out,

gram corrects the ID labels when necessary and merges the two

files. The file is frequency sorted and used in the program

ENDBAND which writes the final file to output (replete with

ID labels for all parameters), and writes a final file to

AFGL format for addition to the next edition of the AFGL Line

Parameter Atlas. ENDBAND also gives useful statistics on the

data making up the band.

The final file is used with the old MSF to generate

a series of plots that visually display the changes that re-

sulted from the updating procedure. This presently includes

a plot of the changes in the line positions and several plots

of the changes in the line intensities. Examples of the plots

are given in Figures 5 to 9.
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The procedure discussed above has been successfully

applied to the 14 bands of H 20 listed in Table 1.
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ABSTRACT

The dipole correlation function for molecular pressure

broadening is treated in a quantum theory which rigorously

satisfies the Fluctuation Dissipation Theorem on a microscopic

level. The two basic approximations in the theory are the

uncoupled-line and binary collision approximations. In the

present paper, the consequences of the formulation are anal-

yzed up to second order in the anisotropic molecular interac-

tion. An isotropic potential is also included, which, in

principle, is treated exactly. At large times it is shown

that the theory reduces to the well-known impact approxima-

tion. At short times, an autocorrelation function of Gaussian

form, with a renormalization of the initial state occupancy

is obtained. It is found that the qualitative features dis-

cussed above are unaltered in higher order perturbation theory.

The results imply that all time-derivatives of the autocorrela-

tion function at t = 0 exist. This further implies that all

moments of the lineshape function in the frequency domain

exist, hence that the lineshape function must decay "exponen-

tially" sufficiently far in the wings.
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I. INTRODUCTION

I,
In the calculation of molecular pressure broadening, ex-

tensive use has been made of the autocorrelation function 1-3

for the dipole moment operator in the time domain. Using this

method, the power spectrum for absorbed or emitted radiation

is obtained from the Fourier transform of the autocorrelation

function. This result follows from the quantum analog of the

Wiener-Khintchine theorem1 for classical correlation func-

tions. In spite of the diverse formulations 4-12 which may

be found in the literature, it appears that certain aspects of

the theory remain incomplete or have not been adequately

discussed.

It is generally assumed that the far wings of spectral

transitions are strongly influenced by the small time behavior

of the autocorrelation function. However, any rigorous treat-

ment for small times must certainly satisfy the Fluctuation-

Dissipation Theorem (FDT).I1'I - 16 The FDT has been incorpor-

ated into a number of essentially phenomenological theories,
17 -19

using the Egelstaff2 0'21-Schofield complex-time transformation.

These theories force the FDT to be valid on a line-by-line

basis, using an autocorrelation function involving a number of

adjustable parameters, typically a time between collisions.

Tc, and something analogous to the duration of collision, 'Td*

To our knowledge, no microscopic formulation which satisfies

the FDT has been presented in the literature. In this paper

we provide such a formulation. The present theory will also
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provide an explicit microscopic description for the short-time

behavior of the autocorrelation function, and for the transi-

tion to the long-time regime where the impact approximation is

generally considered to be valid. These two aspects have re-

mained unclear in most previous formulations.

In the present paper we shall make essentially two approx-

imations; (a) the binary collision approximation, and (b) we

shall eventually ignore line-coupling effects. 596 For problems

involving atmospheric densities, the binary collision approxi-

mation appears to be justified from experimental observations.

The neglect of line-coupling effects is more serious, however,

construction of a general theory which includes such effects

rigorously, and which also satisfies the FDT, appears to be a

more complicated problem. Within the two approximations above,

we shall show, at small times, that the autocorrelation func-

tion for each line is of Gaussian form. This implies that all

time-derivatives exist at t =0, hence that all moments 17 of

the lineshape function must also exist. The transition to the

long-time impact regime will also be examined.
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Il. GENERAL THEORY

We shall write the absorption coefficient (cm-) in the

form17

a~~w) 4 w n rad
( ) - 3c "()I-l

X"(w) = tanh (W) c dt

S[(t) + (-t)] (II-2a)

(1 I- e- SW  f dt e-iwt I-b
¢(t) , (II-2b)

f dt e-i-t (II-2c)
_[(t)-

In these equations, nrad is the number density of radiating

molecules, 8 (kBT)-, and *(t) is the autocorrelation func-

tion given by

¢()=Tr {p(H)I(0-."(t)) (II-3a)

€(t)=Tr {pH 0-(t},(II-3b)

=Tr {p(H) (t)-P() (II-3c)

where i0(t) is the Heisenberg operator

iHt iHt
e(t) e--F- 4(0) e- , (11-4)

and

p(H) e OH/Tr (e - OH} (II-5a)

e- H/Z, (II-5b)

is the canonical density matrix.
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The Hamiltonian H is for a system consisting of one radi-

ating (absorbing) molecule, and Np perturbers with which it

may interact.

The equivalence of formulas (II-2a) - (II-2c) is contained

in the time domain statement17 of the FDT, i.e.

= (t + i8) . (11-6)

This result is readily proven from Eqs. (II-3a - II-3c) using

q cyclic invariance and the fact that e ±iHt/ commute with p(H);

Eq. (11-6) must also be consistent with the relation

0(-t) = Oft) * 9 (1-7)

which guarantees that a(w) is real.

From Eqs. (II-3a - II-3c) we may write

iHt iH (t-i 8W)
0(t) Z-1.Tr{p e1FiP e- -- (II-Sa)

0(-t) O(t + im )

iH (t +i84h) iHt
SZ-*-Tr{e-F v -} . (II-8b)

In what follows it will be convenient to decompose the

Hamiltonian H as follows:

H=H +V , (II-9)

where H0 contains the unperturbed energies of the molecules

and any purely isotropic interactions, V0 , which do not in-

volve the internal states, i.e. V0 depends only on center of

mass separations. The perturbation V is then taken to contain

the anisotropic interactions between the radiator and the per-

turbing molecules.
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Now in Eqs. (11-8a - II-8b) we introduce the time-develop-

( ment operator defined by

iHt iH0 t
e- -=e-- - U(t) ,(II-10a)

iHt * iH0t

e-- U(t)T e--W ,(II-10b)

or, more generally, for complex t

iHz iH0z

e F e--F- U(z) ,(II-lla)

with adjoint relation

iHz* iH0z
e -- = U(z) e -h-- (I1b

From the above relations, one readily sees that U(t) is uni-

tary for real t. Making use of these definitions, we obtain

iH0t iH0t
0(t) v Tr{p(H0O)U(t-iM )p U(t)'e4 - e--F-'- U,(II-12a)

and

(-t Oft+ joh)

iH 0t iH0t

v V Tr{p(H0) e-1 P e---- U(t).P U(t-iw*)t) ,(II-J2b)

4 where p(H0) e- HO/Tr{e-SH0}, is the unperturbed density

matrix, and where v is the ratio

V=Z0-. Tr{e- OH0}) (11-13)4 - Tr{eH)

From Eq. (I--12b) it iE clear, .- a trivial fashion, that

the FDT is still sati ;fied at this point. However, there are
6

ways of rewriting all of these equations which make identifica-
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I

tions far less obvious. For example, if we let t - -t in

Eq. (IT-12a), we obtain

iH0t iH0t
%(-t =v Tr{p(H 0 ) U(-t-ish ) 'I U(-t) -e--F -  e--7_--.(II-l4)

The equivalence of Eq. (II-12b) and Eq. (11-14) is now not

trivial, and it must be obtained from various identities which

we will presently derive. An even more subtle problem con-

q cerns the following point. One does not obtain a correct ex-

pression for t(t+iSh) by simply replacing t by (t+ih) in the

right-hand side of Eq. (II-12a). The reason is, in the U(t)t

operator of Eq. (II-12a), the two operations of complex time

translation t -b t+i0Z and of taking the Hermitian adjoint do

not commute. We shall show that the correct procedure is to

eliminate the adjoint operation, and then to perform the com-

plex time translation.

The basic identity which we shall need is obtained as

follows; in Eq. (II-lla) we replace z by -z and obtain

* iH z
iHz * . (I-15)
eW e__f U(-z)

We now equate Lqs. (II-llb), (11-15) and obtain

iH0z iH0z
U(Z)%  e -M U(-z) e -W. (II-16)

Some useful special cases for real t are

iH0t iH0t

U(t)= e-F U(-t) e'---- 8(II-17a)
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iH0t iHt
U(-t) =-'-- U(t) e -h-- (ll-17b)

iH0t iH0t

U(t) U e- (- U-t )% e- - .(IT-17c)

The equivalence of Eqs. (II-12b), (11-14) for #(-t) can readily

be established by starting from Eq. (II-12b), making use of

Eq. (I-16) with z = t - i8W, inserting Eq. (II-17c) for U(t),

and finally using cyclic invariance of the trace expression.

Next we return to the problem of correctly obtaining

-(t+iBh) from *(t). Starting from Eq. (II-12a), we make use

of Eq. (II-17a) to eliminate the adjoint operation. This con-

verts Eq. (II-12a) to read

iH0t iH0t

v(t) V Tr(p(H 0 ) U(t-ih) 'P e-----U(-t) ' e--} . (11-18)

The complex time translation t -o t+iO" then gives

*(t+i ) v Tr{P(H0 ) U(t) 'I

iH 0(t+ifffi) M 0(t+iS )

e U(-t-iM) P e W. (11-19)

Now inserting Eq. (II-17c) for U(t), Eq. (11-19) simplifies to

give our previous expression (11-14) for (t+iM)

We have discussed the above points in some detail because

we will need to make use of similar manipulations tQ verify

that the FDT is satisfied at later stages of the formulation.

For later purposes, it will also prove convenient to in-

troduce the integral equations for the U(t) operators. With

the boundary condition U(O) = 1, one obtains the integral

equations
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u(t) = 1 f V(t') u(t') dt' (II-20a)
0

tt t
U1t) i + f U(t') V(.t') dt' 9(II-20b)

with

iHot iH0t
V(t)e e h V e _" .(I-20c)

More generally, for complex t, we write

U(z) = 1 V(z') U(z') dz' ,(II-21a)

0

iH0z' iH0z'

with V(z') eTW V e-W ,(II-21b)

where the integration can be taken over any path in the com-

plex z' plane where the integrand is analytic.

To conclude this section, it is interesting to compare

Eq. (II-12a) for 0(t) with the result one obtains in an anal-

ogous theory which does not satisfy the FDT. In such a theory

which ignores so-called "back reaction," p(H) is approximated

by the unperturbed density p(P.0), and leads to the result

iH0t iH0t

*(t) = Tr{p(H 0 ) 0 U(t)1 e-- u e'W- U(t)) . (11-22)

Comparison of Eqs. (IT-12a), (11-22) shows that the more com-

plete theory:

Z0
(a) Contains the factor v Z

(b) Replaces a U(t) factor by U(t-i8g ),
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(c) Contains a rearrangement of the various factors which-

cannot be eliminated using cyclic invariance of the

trace.

Items (a) and (b) above might have been anticipated, however,

item (c) is more subtle, and we shall refer to it as a "re-

ordering" effect.
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III. UNCOUPLED-LINE AND BINARY COLLISION APPROXIMATIONS

In this section we shall make the two approximations dis-

cussed in the Introduction, namely the uncoupled-line and

binary collision approximations. To facilitate these approxi-

mations, it is convenient to separate out the internal states

of the radiating molecule in the expression for H0. Thus we

write

H 0H + H0  IIl

0  RI+0

where HRI contains only the internal coordinates of the radi-

ating molecule. Then H0 contains all the rest of the unper-

turbed Hamiltonian, i.e. the internal coordinates of all per-

turbers, the translational coordinates of all molecules (in-

cluding the radiator), and the isotropic interactions between

the radiator and perturbers. The unperturbed density matrix

then factors as p(H0 ) =0 pRI ) P(H0). The operator p(H0 ) can

also be further factored, however, it is convenient not to use

this at present.

We denote the eigenstates of H 0 by ljm>, where n. is the

magnetic quantum number, and where j stands for all other

quantum numbers necessary to specify the internal state. Now

in Eq. (II-12a) we take the trace over p(HRi) and find
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SP( ) e ,)t
ii i 3 f 3 f ii f i1 f i

" <j~m~IJi ljfmf> '<jfmf l i 'jmI>

* Tr{P(H0 )<j'm![U(t-iI) tjm >.<jfmfIU(t)* 1nf>J,(III-2)

with p(c.,) /i/ (2j+l) e . (111-3)
i 3

In obtaining the above result from Eq. (II-12a), we have used

the fact that

iH t iH t iH0it iH0 t
0 ~ 0 RI14 RI

e Z Pe--T- = - Pe W

because the remainder of the unperturbed Hamiltonian (H0) com-

mutes with U. It is again interesting to compare Eq. (111-2)

with the analogous result derived from Eq. (11-22) which does

not satisfy the FDT:
p( .) e (c,,-c,)t

*(t) = "m m' m ]

*'jjm. (m>j'm~ ' f f Ij.m'.>

1 Oim jfmf>.<jff 11

Tr{p(H 0 ) <)fmflu(t) tljf.mf>e<,mU(t)Ijjmi>) (111-4)

Comparison of the above equations shows four differences:

(a) The factor of v = Z0/Z in Eq. (111-2),

(b) U(t) 4-- U(t-iSM),

(c) The difference in two statistical factors p(c.,) and

p(e. ),
P( i

(d) The different order of U relative to U t in the trace

express Gion.
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Items (c) and (d) above arise from the "reordering" effect

discussed previously.

At this point we shall make the uncoupled line approxima-

tion, jj = if and j! = ji. In a separate publication, one of

the present authors (R. W. D.) will present a somewhat simpli-

fied approach which is meant to be applicable only in the far

wings. This formulation is carried out in the frequency do-

main, it satisfies the FDT, and it correctly includes all

possible line-coupling effects. We note that the uncoupled

line approximation eliminates part of the "reordering" effect

discussed above, i.e. p(C j!) o p(c. ) in this approximation.
Jii

If we now apply the uncoupled line approximation to Eq.

(111-2), and then make use of the Wigner-Eckhart theorem for

the u matrix elements, we obtain

Vt) = " P(Cj )(2ji+l)<jill. llJjf>l2

3i3f i

e Cc. -( . )t Cif(t) , C(II-5))f 31

where the reduced matrix elements satisfy the symmetry relation

(if+l)l<jfll~jllji>l' =  (2ji+l)i<jill lJ f>l2 , (i1i-6)
Jf

and where Cif (t) is a correlation function given by

Cif(t) +1 ) 11 f
m m m mf mf m

* (jflmfmljfljimi)(flmimlIfl1jim)

Tr(P(H0)<" imU(t-iM4)(jimi>

* <jfmflU(t) ljfm>l (111-7)
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Before proceeding to make the binary collision approxima-

tion, it is interesting to note the normalization properties

of Eqs. (111-5), (111-7). First we note that Cif(0) 1.

Rather, from Eq. (111-7) we obtain

Ci(0) 1 2 , 1  Tr{p(H0)<jim i(i+i) m M

• (jflmfmljflJimi)(jflmfmljf:lJim.! ) . I-)
mfm

Performing the sum over mf, m in Eq. (II-8) simply produces a

factor of 6mi m'' and leads to
1 1

C if(0) = Ci(0) i Tr{P(H0)<jimijU(-i)jimi>.(III-9)
1f mi

Although this does not equal unity, we can write

Cif (t) = Ci(0) Cif (t) ,(III-10)

or

~ Cif(t)
Cif(t) =C ,(III-ll)

then Cif(0) = 1, and we can rewrite Eq. (111-5) as

*(t) = i (c. )k<j ijjlIlIJf>l' e (E jf-Cji)t Cif(t),

where

5(e ) = v p(cj )(2ji+l) Ci(O) .(111-13)

1 1

We now show that (ji) is simply a renormalized initial state

occupancy, in particular that
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S(c.i) = 1 . (111-l )
Ji  j

To prove this, we combine Eqs. (III-9), (111-13), (111-14) to

give

3i =i v 3ii p(c.i) r{P(H0)<jimijU(-iM)jimi>)

= v Tr{p(H 0 ) U(-im )} ,(III-15)

where the trace is now over the complete unperturbed density

matrix. However, it may readily be established that

Tr{p(H0 ) U(-iO )l =z -V s(III-16)

4 0

from which the result (111-14) follows immediately.

Now the binary collision approximation to Eq. (111-7) is

simply

N
Cif (t) = [qif(t)] ,(II1-17)

where NP is the number of perturbers, and with

1 1 (jflmfmijf jimi)(jflmpnjfljimj)
(2ji+) mim

i 1 1.Li

<jfmfiUs(t)Ijfmf> }

In the expression (111-18), the subscript S on the p and U

operators denotes that these operators now correspond to a

single radiator and perturber.

One next invokes the same argument used by Baranger 5 and

others. Namely, one assumes that qif(t) has the form
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qif(t) [I + Fif(t)) (II1a

NP

where a is the normalization volumeg and flp is the perturber

density. Then in the limit of large Np, Eqs. (111-17),

(111-19) yield

C Cif(t) =e n , i t (III-20a)

or

C if (t) =e NPEi~). (11-20b)

In order to justify the form in Eqs. (111-19)9 we can

begin by noting from analogy with Eqs. (11-20), (11-21) that

the U S operators in Eq. (111-18) can be written in the form

U S(t)~ 1 + W S(t)t  (III-21a)

U S tj-im) 1 + WS (t-i0) s(II1121b)

where

Ws(t) - f v (t1) U (t1) dt' ,(III22a)

W (t)~ t t)tv(1 dt' ,(III-22b)S f U Ct)

00

Then in Eq. (111-18), the term in the product of the U's cor-

4 responding to unity may readily be shown to sum to unity,



which justifies the first term in Eq. (III-19a). The volume

dependence of the second term in Eq. (III-19a) will be estab-

lished at a later stage.

It is important, after having made the uncoupled line

and binary collision approximations, to be able to demonstrate

that the FDT is still rigorously satisfied. The proof that

this is, indeed, the case is given in the Appendix. Briefly,

the proof consists of first showing that the FDT is satisfied

provided

Cfi(-t) = Cif(t+ih) , (111-23)

(note the exchange of indices i, f). In our binary collision

approximation, (III-20b), the condition (111-23) is clearly

satisfied provided we can show

qfi(-t) = qif(t+iM) .(111-24)

The details of this proof are carried out in the Appendix. We

also remark, in the uncoupled-line and binary collision approx-

imations, that the reality condition, Eq. (I-7), is satisfied

provided C if(t) Cif(-t), i.e. if qif(t) qif(-t). This

relation can be proven using manipulations similar to those

found in the Appendix.

Returning to Eq. (111-18), we can make use of Eqs. (III-

22) to write
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t1

[qif(t)-l] = (2Jimlfl' ] mmlmlfmjm iml)

{Tr{ps(H0)<m! IW (t-i8J)1jimi>} 6
~u 1 11 Mmfm

+ Tr{P(H 0 )<jfmflws(t)tljf m>) 6 m!m.
11

+ Tr{PS(Ho)<jimjlW$(t-ioA)Ijimi>.<jfmfIWs(t)tfjfmt>}1.

q (111-25)

Once again, we can compare this to the result one obtains

from Eqs. (11-22), (111-4) which do not satisfy the FDT. In

the simpler theory, W S(t-i8O) is replaced by WS(t) in the

first and third terms of Eq. (III-25). In addition, in the

third term of Eq. (111-25), the order of the initial and final

state matrix elements is reversed in the simpler theory. This

is the only remaining "reordering" effect.

We also remark that the first two terms in Eq. (II-25)

roughly correspond to S(b)outer in Anderson theory, 3,24 while

the last term corresponds to Anderson's S(b) inner . In graph-

ical perturbation theory25 the two types of terms correspond

to self-energy and vertex corrections, respectively.
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IV. INVESTIGATION OF TIME-DEPENDENCE IN LOW-ORDER

(€ PERTURBATION THEORY

It is clear, since the Us operators in Eqs. (111-22)

satisfy integral equations, that it will be extremely diffi-

cult to rigorously treat the anisotropic interaction V to an

arbitrary order in perturbation theory. In this section we

will therefore confine our discussion of the theory to second

order. However, as we shall point out, only the quantitative

details are altered if the theory is carried to third or

higher order. Moreover, we also point out that the present

theory satisfies the FDT order-by-order in perturbation theory.

In this section, in order to provide a more simplified

account, we shall treat the internal states of both the radi-

ator and perturber as non-degenerate, i.e. we shall ignore the

(21+l)-fold degeneracy in the m indices. This also means that

we shall suppress the Clebsch-Gordan coefficients and the m

summations in Eqs. (111-18), (111-25), and shall set factors

of (2j+l) equal to unity. These details can easily be re-

tained, but are important only for numerical calculations,

which will not be attempted in this paper. As a final simpli-

fication in notation, we shall also drop the subscript S on

the PS, US, WS, VS operators which appear in Eqs. (111-18)-

(111-25), understanding that these operators now refer to a

single radiator and perturber.

We shall begin by considering the second term in Eq. (III-

25), which we now simplify to read

5



Kf(t) Tr {p(H 0 ) <jfIW(t) ljf>} (IV-l)

This term enters in an identical fashion in both the theory

which satisfies the FDT, and the one which does not. However,

before considering this term in detail, we briefly remark on

the other two terms of Eq. (111-25), which we also simplify

as

K i(t) = Tr {P(H 0 ) <jilW(t-iM4)Iji > }  (IV-2)

K if (t) = Tr {P(H 0)<jijW(t-iM4)jji>.<jfjW(t)tjjf>} (IV-3)

Concerning Eq. (IV-2), at large times (Itl >> 8) this term

can be approximated by

K i(t) = Tr{p(H 0 ) <jilW(t)lji > }  ,(IV-4)

and the discussion in this regime is essentially identical to

that which we present for Kf(t) at large t. At very small

times, Ki(t) approaches the finite constant

Ki(0) = Tr{P(H 0 ) <JiIW(-iM)!fi>} , (IV-5)

and, as discussed in Sp*tion III, leads to a renormalization

of the initial state occupancy. The discussion of Eq. (IV-3)

is somewhat more complicated, and this will be given

separately.

In order to perfor the trace in Eq. (IV-l), we need -he

resolution of the identity operator in terms of the product

states of H0 . This can be written

1 .0 1ji'q'><ij:''j = 1 , (IV-6)
jfJ'k'
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with 1q'* ,>= lji>l,> , (IV-7)

where Iij> denotes an internal state of the radiator, lJt>

denotes an internal state of the perturber, and where 1q,>

is an eigenstate of the Hamiltonian

H S0  --- + V0 (r) . (IV-B)

In Eq. V with r = r -r2 the relative coordin-
r

ate, m = m1m2/(ml+m 2 ) the reduced mass, and V0 (r) is the iso-

tropic pair potential. Since P, V0, V do not depend on the

center of mass coordinate, A, of the pair, it can be seen

that the translational motion of the center of mass plays no

role in the subsequent theory. We thus have

, 2V2

2m'! + V (r))ltpj~ =-~~-~>.(V

For unbound states 1> can be taken as any suitably normal-

ized set of continuum eigenstates, and c i = h2k2/2m. However,

if V0(r) leads to bound states, sums over JIt> implicitly con-

tain a sum over the bound states. The unperturbed energy

associated with a state ljfJ$t> can then be written

E fjA = £.f + . (IV-l0)

If we now evaluate Eq. (IV-l) in first order perturbation

theory using Eq. (1II-22b), we obtain
: t

Kl(t) L-- I P(C;) P(CT)'<jfJq1VljfJq >  , (IV-II)

with
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P( UV e- / ' ".(V-)

The expression (IV-II) is seen to be a linear function of t

without any approximations. We note, however, that K(1 )(t) is
f

pure imaginary, and therefore it contributes a phase shift,

rather than damping, to the autocorrelation function Cif(t).

It can also be shown, for multipole interactions, that Kfl)(t)

vanishes when a sum over magnetic quantum numbers is per-

formed 2 5 (which is suppressed here). In what follows, we

shall therefore neglect these first order phase shifts.

We next evaluate Kf(t) in second order perturbation

theory, and find

K(2) (t) -pc)- <aIVo> 2 f(t) , (IV-13)
Xf 2 it Ej i c l)e

where, for simplicity, jcx> - 0fJV'>, 0> -I-fIJ'*,> , and

where

i(C-C )t

f(t) (t - A [e7 " -1} (IV-14)
T T - (C -C

An alternative and useful form for the f(t) function is

f(t) = L-1-2 El - cos(wast)]

i a$ E t - sin(wa t)] (IV-15)

where, woo (CEs - )/kh. In this sec.,d fc.r t ;.s immediately

clear that the real part of f(t) is an even function of t,

while the imaginary part is odd. Also from Eqs. (IV-13),
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(IV-15), we see that the real part of K 2 )(t) is always nega-
f

tive (gives damping).

The time dependence of K(2 )(t) for long and short times
f

can now be deduced from a study of the f(t) function. First

we note that f(t) is a perfectly well-behaved function when

(CO-C ) - 0. By expanding the exponential in Eq. (IV-l4),

we find

f(t) 1 t as (Ea -C 4 0 . (IV-16)

Furthermore it is clear that the above result is pre-

cisely what we get in the small time limit t * 0. Hence, for

short times,

KlM2 (t) - I (Cj) (O- I 1<Jfjvlf,' >l ' .

(IV-17)

Thus as t * 0, K(2)(t) is a real, quadratic function of time,

and from Eq. (III-20b), it leads to a correlation function of

Gaussian form.

In order to examine the long time behavior, we make use

of the identities26

tim [l-cos(w t)]t W C0 00 SW 8(a)Itl (IV-18)

Lim 1Pr
tI- [w at-sin(w t)] t P. . (IV-19)

Hence the long time limit of K2)(t)is given by
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K -(2) (t) P(Cj)

- P(E ) Pjcjd

l<jfjqIlVljfjq,>I c Pr . (IV-2G)

The above result is identical to the impact approxima-

tion 25'27 in second order perturbation theory. The appearance

of Itl in the damping term is also familiar in the impact

theory. If one assumes Eq. (IV-20) to be valid for all times,

including the neighborhood of t = 0, the factor Itt leads to

singularities in the derivatives of Cif(t) at t = 0. This

immediately implies that the higher order moments17 of the

lineshape function (the Fourier transform of Cif(t)) do not

exist in the impact theory. As we have seen from Eq. (IV-17),

the correct damping of Cif(t) at small t is Gaussian, which

implies that all moments of the lineshape function are well-

defined and finite. In the frequency domain, these results

imply that the extreme far wings must decay in some "exponen-

tial" fashion, rather than the simple (W-wif) 2 decay predicted

by the impact theory.

For intermediate times, it is clear that the time depend-

ence of K (2)(t) is complicated, and it will probably need to
if

be extracted numerically. A rough criterion for the inter-
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mediate time region is <w > t 1 1, where <w,,> is some aver-

age energy difference. For a situation in which l<w U>kBT,

we estimate the transition region to occur at times of order

t uai/kBT 2.6 x 10-I sec, for T = 296K. It is then

clear that this is precisely the range where the difference

between W(t-iO1) and W(t) begins to be important in the Ki(t)

term.

Before going on, we remark that the long time behavior

of the term K 2)(t) (with W(t-i4i) = W(t)) can be obtained1

from Eq. (IV-20) with the substitutions jf -b-' ij - j!9 and

with the imaginary term in Eq. (IV-20) changing sign. This

implies that the real parts of K 2 (t) and Kadd, while
1 f t

the imaginary parts subtract. This is also familiar from the

impact theory.

A second item that can be disposed of at this point is

justification of the normalization volume dependence in the

second term of Eq. (III-19a), i.e. we now show that K2) (t),

as given by Eqs. (IV-17), (IV-20), is correctly proportional

to l/a. To see this we rewrite Eq. (IV-12) as

p(e) /( /d e- c") . (IV-21)

In the limit of large (9, * 1 f d'i ", and the remain-

ing factor of 1 in Eq. (IV-21) turns out to give the expected

volume dependence of K 2 )(t). To complete the proof, wef

note that if 1W is a continuum wavefunction, it will contain
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a normalization factor of L, while bound state IN> are nor-

malized independent of 0. Then in Eqs. (IV-17), (IV-20), if

I1I> and J ,> are both continuum states, the square of the

matrix element yields a factor 1/02. This is just what is

needed to turn the , i' sums into integrals. Likewise one

sees that the volume dependence is correct for bound * free,

and bound -s bound matrix elements.

.We next consider the more complicated quantity Kif(t) as

given by Eq. (IV-3). It is also interesting to compare this

with a quantity

K if (t) = Tr{P(H0)<jfIW(t)tIjf>e<jiW(t)Iji>J , (IV-22)

which obtains in the analogous theory where the FDT is not

satisfied. In comparing Eqs. (C-3), (IV-22) we note that a

"reordering" effect remains. However, a careful examination

of these equations (including magnetic quantum numbers sup-

pressed here) shows that, to second order, the "reordering"

effcct plays no role, and only the difference W(t) - W(t-iM)

is important. We also remark that if one confines the analy-

sis to second order perturbation theory, there are a number of

interesting cases where Kif and Kif vanish. This happens for

linear and asymmetric rotor (radiating) molecules for the

case of dipole-dipole or dipole-quadrupole interactions, be-

cause one obtains diagonal reduced matrix elements of the

radiator's dipole moment operator. Inese resuits are also

familiar from Anderson theory,3 524 i.e. S(b)inner makes no

contribution in such cases.
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I,

We note from Eqs. (IV-3), (IV-22) that Kif(t) and Kif(t)

are already at least of second order in V. Then to second

order, evaluation of the formulas for large t gives

i() K2 if I = i ) " E0

J j

<ji J* Iv jiJ',q,><jfJ'@*, Ivl fJq

W 6 (Cjt-Ejt,) . (IV-23)

This is, again, the impact result, and K(2)(t) subtracts from

the damping given by the K( 2 ) (t) and Kf(2) (t) terms.

Next for short times, Eq. (IV-22) evaluates to give

Kt P(Ej) P(Ej)
if J* J-9'

•<jij Ilvljij' ,f><jfj' ,Ivljfj t> . iv-24)

This term is quadratic in time and subtracts from the damping

given by K(2)(t). However, at very short times we should

consider, instead of Kif(t), the function Kif (t) which satis-

fies the FDT. Its small time limit is

K .ct) Ift_ pI I) ,p(e.) • [e$K(WAJ-j' ' + 13if W~i A

it I IVPiCJO(C;)
Jk Jk' ~l

[e (W JJl') - 1]

j i *jj , '><JfJ' . (IV-25)
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We note, although K.2) (t) contains a term linear in t, thatif

this term corresponds to a phase shift, rather than damping.

Hence we again find that the damping occurs quadratically at

small t. Finally, for completeness, we quote the general re-
(2)(2

sults for K f (t) and K. 2 (t) in second order perturbation

theory;

if (t) - P

JkJI
i ( )t[e R 1a -a ]

', ~~i (Ejr-cj, ,)(-4)
' [e- - 1 (IV-26)

The long time (Itl >> W) limit (Eq. (IV-23) is obtained from

this formula by again using the identity (IV-18). The short

time limit leads directly to Eq. (IV-25). For K 2)(t), we

find

K.(t) 1 pj)p(ej ) I iIJflilJ'V, ,l2 f(t)
J J., ,(IV-27)

with

i (C -) )(t-iBt)

f(t) i(CO-r {(t-ioh) + i e - i

(IV-28)

and where ca 2 cjij , co S cj-j,;,. It is not difficult to

explicitly show that our second-order result for [qif(t) - 11,

as obtained from Eqs. (IV-13), (IV-27), (IV-26), satisfies

the FDT, and it appears that the FDT is satisfied order-by-

order in perturbation theory.
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V. DISCUSSION

Within the binary collision and uncoupled-line approxima-

tions, we have derived an expression for the dipole auto-

correlation function which rigorously satisfies the Fluctua-

tion Dissipation Theorem. We have shown h ow these results go

into the impact theory at large times. For short times we

have found that C if (t) is damped in a Gaussian fashion. Al-

though our analysis in Section IV was confined to second order

perturbation theory in the anisotropic interaction, by going

to third order we can easily convince ourselves that the above

behavior is completely general, and only the details are al-

tered in higher order perturbation theory. These results imi-

ply that the lineshape function in the frequency domain must

decay in some "exponential" fashion sufficiently far in the

wings.

Although we have refrained from labeling the present

formulation as a "unified" theory, we believe that it quali-

fies as such. One reason that we have avoided the above label

is that most authors of "unified" treatments are content to

show that their formulation goes into the impact limit at

large times, and for small times takes the form of the quasi-

static or statistical theory. 
28 3 0

We have shown that the present theory, indeed, does re-

duce to the impact approximation at large times. However, it

is not clear that the small tim~e limit of the present formula-

60



tion has very much in common with the standard statistical

theory.

One problem in establishing such a connection is that

most formulations of the statistical theory are what Smith,

et al31 have termed "scalar" theories; i.e. at some conven-

ient stage, the dependence of the potential on the internal

states is ignored, except possibly for a constant which may

depend on the various vibrational or electronic bands of in-

terest. In our present formulation, if the anisotropic inter-

action vanishes, Cif(t) = 1, and there is neither broadening

nor shift of the spectral transition. This result has also

been proven by Baranger 5 in a slightly different context,

within the impact approximation.

Another aspect of the simple statistical theory also

deserves comment. In a very terse, but highly illuminating

paper, Yakimets3 2 has applied a "scalar" statistical theory

to far wing pressure broadening. By invoking the high energy

approximation,3 3 and using the method of stationary phase,

Yakimets derives a result for the far wing lineshape function

for potentials of the form (/rn). Similar results have been

obtained by Holstein34 and others. The result for the (pseudo)

dipole-dipole case (n z 3) is that the far wing decays as

(W-wfi), precisely the same dependence as the impact approx-

imation would give. Although the above result may have valid-

ity somewhere in the wings, our present formulation shows that

it cannot possibly be correct in the extreme far wings, which
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must be "exponential." It is clear that theorists such as

Yakimets and Holstein are well aware of the above limitations,

however, there appears to be a misconception among some

workers that the statistical theory is applicable in the ex-

treme wing region.

Finally, although our formulation has been completely

quantum mechanical, this does not appear to preclude the use

of semiclassical methods. In particular, the eigenstates

lq> of the isotropic Hamiltonian (IV-8) might be chosen to

be time-independent WXB wavefunctions. We hope to explore

this and other computational possibilities in a future

publication.
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APPENDIX

PROOF THAT THE FDT IS SATISFIED IN THE BINARY COLLISION

AND UNCOUPLED-LINE APPROXIMATIONS

The first step in the proof is to show, for an uncoupled-

line approximation of the form Eq. (111-5), that a sufficient

condition for the FDT to be satisfied is

Cfi(-t) = Cif(t+ish. (A-i)

The above relation applies to any uncoupled-line approximation,

and is not limited to the binary collision case.

Now, starting from Eq. (111-5), we have

V .[. p(. )i(2ji+l)l<jijjil:f>j"]iif

ei Cif(-t) (A-2)

We next change names of dummy variables i 4 f, and make use of
4.

the symmetry relation (111-6) for the reduced matrix elements.

This gives,

(E jf-ei )t(e e' F C fi(-t) . (A-3)

Retaining this result, we next obtain, from Eq. (111-5),

the result,
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V(~ P( (ji )(2ji+l.)l<jillulljf~l'
3i~f

i (s. c. j)(t+iNr)
C (C jf if(t+io) 

. (A-4)

From Eq. (111-3), we note that

P(Cji ) e f i p(Ej-) . (A-5)

This gives

¢(tis V P( . I ~ jf )(2:i+l)l<jillUlljf> l'
jilf

i (. -e )t
* e W i Cif(t+iO) . (A-6)

Comparing Eqs. (A-3), (A-6) we see that a sufficient condition

that the FDT theorem (Eq. (11-6)) be satisfied is just Eq.

(A-i). It i.s then clear, in our binary collision approxima-

tion (III-20b), that (A-I) is satisfied provided we can show
qfi(-t) = qif(t+i h) . (A-7)

To prove the above result, we start from Eq. (111-18)

and construct qfi(-t). To carry this out, we let t -p -t,

Ji o jr, and it is also convenient to make the following

changes in the dummy m-summation indices:

mf m'

m, . mi

mI + f

mi *mIf

m -m . (A-B)
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This leads to the result

. 1 (jjlm!-mlmjtiljfr})(jlmj-m jilfmf)
2jf*. m im imfm? 1

- Tr{Ps(H )<jfmfIUs(-t-i aIif=mf>

• <jimilUs(-t)* jimi>. (A-9)

We next make use of the symmetry properties 24 $ 5 of Clebsch-

Gordan coefficients to obtain the identity
( ~~ilm! -m I j ilj fmfI) (j ilmim l ff

(2if+ l) (Jflmfmljfljimi).(jflmphjfljim!) . (A-10)

Upon inserting this result into Eq. (A-9), we obtain

qfi('t) i (Jflmfmljfljimi)(Jflmlmljfljim!)

" Tr{ps(H0 )<mflUS(-t-i) Iifmf>

* <jIU(-t)tlimi> • (A-)

Retaining this result, we now want to compute qif(t+i g),

starting from Eq. (111-18) for qif(t). Recalling our discus-

sion in Section II, we have to be careful in performing this

exercise. In particular, we have to eliminate the adjoint

operation in Eq. (III-18), before making the complex time

translation t t + i8M. Thus we make use of Eq. (II-17a)

to write
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iH 0t iH0 t

<jfmnfle -W- Us(t) e--jjfmi>

iH 0 t iH0 t

e -K 'ifmfIUS(-t )fifj> e- 77 (A-12)

Now inserting (A-12) into Eq. (111-18), and then letting

t --p t+iBM, we f ind

qif(t+ioyl) = 1 1 (jflmfmljfljim.)(Jlilfim.
(2j i 1) M m!mfmiam~(fmjmj~~j

- Tr{ps(Ho)<jim1IU (t)jjmj>

iH 0
* e X (t+im?) <j fmflus (tio) f l!>

iH 0
*e--x (t+iBoh1 * (A-13)

Application of cyclic invariance gives

iH 0t iH0 t

Tr{( Tr{C-F <jimjUS(t)jimi> e 7

* (H .<ffu(ti~jm> (A-14)

We then note that
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iH~t iH0 t

e7r <jim!IUS(t)Ijimi> e 9

iH 0t iH0 t

where we have made use of Eq. (II-17b) in the last step.

Inserting (A-15) into (A-14) yields

Tr{ (

Tr{<iM1U(-1 (jfmfjfli-tiOK)(ifrmp)~fl~
q~f~3.~ Z 3HI im mfm

Tr Trs~i 0 O)<jmflUS(-jt-ip~)i

* <jcm1I~su t-t~jlmi>) . (A-16)

Then aboveresult s16 sen to be3) ideinoEqdAil o

qf(I) Thscopetsth rof

qift~oa (1i~) my (iimlilii)( fJjl671
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